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POSSIBLE SIMPLIFICATIONS OF THE EQUATIONS OF A TWO-TEMPERATURE

PARTIALLY IONIZED PLASMA

V. M. Korovin
Thermal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

In investigating the behavior of an ionized gas in electromagnetic
fields use is often made of the equations of conservation of mass,
momentum and energy, the equation of state, Maxwell's equations
and Chm's law relating the electric field to the current flowing in the
plasma. In a homogeneous isotropic medium this relation is a simple
proportionality between the current density and the electric field
strength [1, 2]. In the general case it is more complex in nature, Pos-
sible forms of Ohm's law for a fully ionized one-temperature plasma
were investigated in [3], and for a two-temperature plasma in 4],
Moreover, it was shown in [4] that, in general, we must take into
account terms proportional to the temperature gradients in Ohm's law,
and that in this case it also becomes necessary to take viscous terms
into account when the electron temperature exceeds the ion tempera-
ture by a significant amount. In [5] in order to facilitate the descrip-
tion of a three-component oneltemperature plasma the equations of
motion for each component, arrived at as a result of a series of
simplifying assumptions, are replaced by an equation of motion for
the mixture and two diffusion equations (Ohm's laws), One Ohm's
law (the relation of current density to electric field) was investigated
for the case of a partially ionized gas in [6, 7], -where it was assumed
that the medium was inviscid and had one temperature, and, more-
over, that anisotropy was not allowed for in writing down the frictional
forces between components,

The present paper proposes a.simplification of the equations given
in [8~10] for a two-temperature plasma containing electrons, singly-
ionized ions, and neutral atoms, The effect of the viscosity of the
components and of thermal forces is allowed for, Particle collisions
are taken to be elastic, and it is assumed that T =T, where T =
=T; =Tg. In the investigation we pass from the equations of motion
for each component to an equation of motion for the mixture and two
diffusion equations (Ohm's laws). An investigation is made of how the
possible forms of diffusion equations depend on the concentration of
the medium, the parameters describing the anisotropy of the transport
coefficients, etc,, while the necessity of allowing for viscous terms
and thermal forces is also investigated, Dimensionless criteria are
given for which Ohm's laws simplify considerably (viscous terms,
pressure gradients, etc, may be discarded).

1. THE SYSTEM OF EQUATIONS FOR A THREE~
COMPONENT TWO~TEMPERATURE PLASMA.

The transport equations for a partially ionized
multi-temperature plasma have the form [8]

an, .
7 + divngu, =0, (1.1)
d.u, .
MaNa =5 + VPa + diV (la — MaNaWaWa) —
1
_n.e¢(E+—c—u,xB)=R,, (1.2)
: du,
%‘ % + —:;—Puvu + Vqa + Puix Bz; — Ml WoF o =
- 31.:23 MamanaTep ™ (Tg— T). . (1.3)

Here ey Ny, m, are the charge, density and mass,
respectively, of a~type particles; c is the velocity of
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light, k is Boltzmann's constant, 744 the collision
time for o and B type particles; and Ty, qy, Uy are
the temperature, heat flux and mean velocity of the
a~-components of the plasma., Moreover, the mean
relative velocity w, =u, — u of a~type particles is
introduced, where u is the mean velocity of the whole
mixture. In (1.2) and (1.3) the notation

d

9 d [}
'd_: = = + (1Y), < = 7 T (uv),

€y 1 di
F, = 'n—a;(E + —u XB>— 7‘;’ Pk = Pabix + Tosk

was employed, where E is the electric field strength,
B is the magnetic induction vector, 7, is the viscous
stress tensor, and p, the partial pressure of -
components of the plasma. It is assumed that each
of the components is a perfect gas, i.e., py =n, kT,.
The plasma is taken to be quasi-neutral ng ~ nj.
The form of the heat fluxes and viscosity terms
entering into equations (1.2), (1.3) is given in [9].
We introduce the electric current density j=
=-nge (We — wj) and the ion slip velocity s = w; ~
- w,,. Then for R, we have

.Ra = Ra(l) -+ Ra(z) ’ Ram = Ru(j) -+ R&(S) ’

Ram sz(l)_{_ R,,(T)
; . . T
Rs(}) :YGHJH + 74'LJ_L+ "B—JXBv
A
R, =v,s; +V“le+%sx3,
RO = 8,0y, T, + duby Ty + 220 yT
a  — 0a V) e+ a V1 E+TV exB,

g A
R," =8 "y T + 0. v, T +—5- v xB.

The symbols || and L attached to the vectors indi~
cate that components parallel and perpendicular to
the magnetic field, respectively, are taken; Vers Vo
64, 4, are connected with the Xgs Moy 7\a employed

. (1
in [9]:
1Ly A)
Lt O 1Ly Ay @)
@ = e «
e
e A (2 R
L A )y L mp @)

v (L A g T AY L A )

_ P'i“ (Ls AYp @ _uan(_L. ANy & (1.4)
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SR W ) Np @ (1.4)
(cont'd.)
9,1 M) g M Mg @) g KL Ay )
aa" - aa—L = Ay, du" = dul = da; @uA = da.A — 09
Q= — WMyt Qg = — N,  dy = —fanimaTia?,
a; £a; ea
d:auab-(l):‘_‘—z b(z):—-— * b(g):— d
¢ i 5p, " 5p; " e 5P
D S C N S S SR
@ Sp, 7 ¢ 10p, " & T 7 10p, ' T T my -

The conditions
Naa=Nda=0, Nb"=0 =123  (1.5)

also hold.

In order to close the system (1.1)—(1.3) we must
make use of the equation of state for each component
and also Maxwell's equation.

2. ANALYSIS OF THE TRANSPORT COEFFICIENTS

In order to make practical use of the coefficients we must know
the dynamics of particle collisions, To be specific, we shall assume
that the particles of all components are spheres and that the collision
of a charged particle with a neutral, as well as the collision of two
neutral particles with each other, is described by the laws of elastic
collision.* In accordance with this, we have the expressions

Qaa = Qia =40Q,,,

for the geometric collision cross sections Q 3 for - and B-type
particles, where aq is the radius of the first Bohr orbit. For charged
particles we shall take the interaction to be a Coulomb interaction,
For known Q5 the collision times Tg are also known (formulas
(2.16)~(2.18) of [9]).

We introduce the parameters ,1,*, @,;7;* and o;7;,, which
characterize the anisotropy. Here w, and wj; are the electron and ion

cyclotron frequencies, and are equal to [5]

Qoq = mao?

B m,
G = o = LI6ATB, 0= = 0961042 B,

myc

where m._ is the proton mass, e = | ee[ is the electronic charge.
For the effective times between collisions we have [9]

TH = 04T, - 1.3 (Toi ™+ 107,
T = 0477 4 0.74vi,7 - Bet

The parameters w,T.* and w;Tj, are connected by the relation

0iTig =50 8"07 2 [13 V24 (13 V24 8) t] 01.*,

T Tea n Q4 IDA)
—— L — = 8 5 {010 )
(9 7, T Tei Qa, « fg Q Qeu 5 T

Here en A is the Coulomb logarithm; for a plasma which is not
too dense en A = 10,

We note that the parameter T bears a close relation to the degree
of ionization in the plasma, Thus T -> « corresponds to a fully ionized
plasma (within a real range of temperatures), and 7> 0 corresponds

*In all estimates carried out in future we will make considerable
use of the order of the ratios Q,a/ Qs . To make an estimate of
these ratios in the general case we can employ the theoretical and
experimental data of papers [11-14],

to a weakly ionized plasma.

It is easy to see that the parameter w;Tj,, depending on T, and c,
may be both smaller and larger than the parameter WeTe" though
o,T* L 0,7,* always,

We shall make estimates of the friction coefficients (1.4). The
three last terms in the expressions for y I, y 1, v, I, v, L, as well as
the coefficients y, A, v,A are the result of allowing for terms pro-
portional to the relative thermal fluxes of the components in the
equations of motion,

The contributions due to the thermal fluxes of ions and neutrals
(third and fourth terms) in the expressions (1.4) for y, !, y,L, are of

the order
gholT 1)1, elho (1 )12,

respectively, in comparison with the contribution due to the electron
heat flux (second term), so that they may be neglected to obtain

=By L. le ( — )
Ye = n.e (1 —=), Te Thee 1— 1t ogt, °
A Be TOLT* ( _ 1—37 )
Te nelTort” \"Tpirasts vy D

It can easily be seen that the first term plays the chief part in these
expressions,

We shall compare terms in expressions (1.4) for y;, 7,4

If ¢ <€ 1 €e718Q, then we may also neglect the contributions
due to the ion and neutral heat fluxes in comparison with the elec-
trons in the expressions for the coefficients Yir Ve and so the coef-
ficients acquire the same form as the expressions for ¥, (2.1), with
ae changed to a; and ag, respectively. In the general case only the
neutral contribution may be neglected in the coefficients y;. Here
the contribution due to the thermal flux of the ions may be less than
that for the electrons, as well as being considerably in excess of it
In expressions (1.4) for y, we may omit to take into account the
contribution due to the ion thermal flux. The contribution due to the
neutrals may be smaller than, as well as considerably in excess of
the electron coniribution. From analysis of expressions (2.1) we
conclude that in the limiting case when w,T,* — « the frictional
coefficient yell is 16% larger than yel, if 71—, and anly 7% larger
if T « 1, In the case of finite 7 the difference of the coefficients
yelf and yel is contained within these limits,

Knowing the coefficient™
gl = — 5p.Ys

20eQ (1 —6) o

13Q F(13 44 Via 1+

y=107 (134 (13 +4 V2] 4+

we can make estimates in the expressions for v_. Here it tums out
that we can neglect the last three terms in the coefficients v_f| and
VgL in comparison with the first, and in y,A the second and third
terms. We obtain as a result

vl =vel =a, v =ay (1 +D0a* 1+l

We can always neglect the second and fourth terms in the ex-
pression (14) for vi”, v;‘— in comparison with the first. In this case
if 8 < e, i.e., the electron temperature is much in excess of the
ion temperature, then for T — 0 the third term in the expressions
for wy]] and vj+ (contribution due to the ion thermal flux) exceeds
the first, so that these coefficients differ from each other consider -
ably.

If a<€e 207", then v Il = vyl = d,, and we may neglect
the first term in expression (1. 4) for y,A; here it turns out that

'Va/\ ~ dayB—% T (1 -+ 02T, )

For &3 & 07" the term associated with the contribution due
to the thermal flux of neutrals in the coefficients Ua” andy, L (fourth

*V, A. Polyanskii, Transport Phenomena in a Multi- Temperature
Plasma, Doctoral dissertation, Moscow State University, 1965.



22

term) is of the same order as the first term, and there may be a
considerable difference between yll, and vgt. In this case only the last
term remains in expression (1, 4) for vA It is easy to see that in a
weakly ionized plasma the expression for R, (1) simplifies when

P S PELE
a, *
m_ %
R, _ngeJ-}-das.

Thus, for T, ~10*°K, T; ~10®°K (corresponding to
6 ~ 1071 ) we may neglect anisotropy for 107 <€ <€ 107* in the
expression for the friction force, Now if

v<<max {e0", g7 Q},

(this corresponds to & <« 102 for the electron and ion temperatures
indicated above), we may neglect the anisotropy of the friction

force between the ion and neutral components in the expression for
Ra( 1

. . Ta
RV =y ' j, +1.00, +-F iXxB+ds.

In the general case, each component is characterized by three
heat conduction coefficients, If w;7* «< 1, then we have only one
heat conduction coefficient A0 = 4,1 for the ions and one
cocfficient Ayl = A L for the neutrals, In the isotropic case, i.e,,
for wer * « 1, likewise only one coefficient remains for the elec-
trons A = A,l and, in addition to this, simple expressions are
obtained for the friction forces

Ru(l) =1, Wi+ v, tg R“(Z) =§, i VT, + 4, lgp,

We can easily establish that

&' _ 8t _ 8" _ 1
DA R RO
9! a(l —Ble-"gh Qua T
ST~ arraeiLs BT ge R 2D

always.,

3. TRANSFORMATION OF THE EQUATIONS OF
MOTION

We introduce the mean velocity u, instead of the
velocity components u,,, the current density j and
the ion slip velocity 8 and pass to the equation of
motion for the mixture as a whole and to two diffus-
ion equations

_ meneua-i»-m‘n,u‘.*.m o nw, + ngu,
n, 4 mn, —{-mancl n; ¥ ng .

Here and in what follows we assume that m; = m, =

m, e =my/m « 1.
We can easily show that
u, == — u; == B8 +-u,
u, = —§s +u (3.1)
manu "'l‘l ni

o= = b~/
mn, + mgn; + men, g+ ng ng +ng

where £y and £; are the relative concentrations of

neutrals and ions.
Adding the equations of motion (1.2), we obtain

du

m(n; + n)d — Up—diva -+ %—j,\:B

p::pe_} pi+l)u; T= ng_%_ni—!_nav (3.2)
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where p, T are the pressure and viscosity tensor of
the whole mixture. Following the usual pattern we
introduce the diffusion relations. We use the notation

- dyu
a“a .
mo,n,,‘al—t--—dlvm,,,naw,wal =

= 761— Malially -+ diVv mang (WU, — uu 4 w,u) =1,

and introduce the characteristic parameters: dimen-
sion L, velocity U and time T = L/U. Neglecting the
term I, in comparison with Ij (here we take into ac-
count the fact that ¢ « 1), we form the equations of
motion for electrons and ions. In the relationship
thus obtained we replace uj, and in the equation of
motion for neutrals uy, with u. Such a change is
equivalent to neglecting terms of order £, s/T and
¢;8/T in comparison with the terms s/‘rm and s/74,
contamed in the right-hand sides of the equations.
Eliminating the term du/dt from these two expres-
sions, we arrive at an equation connecting Sy> SL and
8 x B, It is not hard to find one of the Ohm's laws
from this equation: the expression for s = 8, + 8,. We
set 8, & and 8 x B in the right-hand side 0} the equa~
tion of motion of the electron component and employ
the first relation of (3.1) in writing down the Lorentz
force. Neglecting I in comparison with the electro-
magnetic term, we obtain a generalized Ohm's law
(relation between j and E).

We shall confine ourselves to the treatment of a
partially ionized plasma when « < 1. Taking (1.5)
into account and omitting terms of higher order of
smallness, we find that the Ohm's laws have the
form

s=rj, +rij,—rijxB+ o <G+K+ R,%), (3.3)

1 1. 1. 1.,
E—{——c—uxB:J—J“—{—s—_L—Jl—f- ;/\"JXB+

+ 1 (G 4+ Ky + R + - (G, + K +RY) —

— %A (GxB+KxB+4 R, xB)+

+ '1_ (Re‘z’ - Vpe - le ne):

nee

G=tV(p, + p;) —E&,VP,

K =¢,_ div(n, 4 m)—§; diva,. (3.4)
After a series of simplifications in which con-
siderable use is made of the conditions ¢ <€ 1, 6 <€
<1, ax<1, T. < 10% °K, the coefficients appearing
in equations (3.3), (3.4) may be represented in the
following form:

j L
. T 1 it 3
R L= 2 A= 20
rEg = n,e("“e d, +Eo,), = od,’
n.e ) n.e cn.e
sl = 41’ GJ“—”l “' 'c/\z———-—1 s
Te' Te— (1 1+ A) +§a itia

de vaA A A
Z thT wrtig) s ¥ =74,

B
A=t 2T
§a‘”t’mql-
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4, ESTIMATE OF THE TERMS IN EQUATIONS (3.2)—
(3.4)

We shall assume that in equation (3.2) the momentum

term, the pressure forces and viscous forces are of
an order which does not exceed that of the electro-
magnetic forces (otherwise we could neglect the ef-
fect of the electromagnetic forces on the medium in
general), whence it follows that

|Vp|<—[5xBl, |divalS o [ixBl.  (4.1)

We note that for any weTe* and wiTi* there is, amongst the five
viscosity coefficients which characterize each component in the gen-
eral case, atleast one (na(“)) of order larger or equal to the order of
the remaining viscosity coefficients of this component

0
na( P~ Pt s

ﬂem) ~ Pe¥es ni(O) ~ Pty

where Tq are expressed by formulas (2.6) of [9].

Comparing viscosity coefficients, we obtain

(0) L)
n: — 8‘1'6"/*1 -+ G.a ni( ) —
n )
a

1+a
50 e Ade 4.2

{4162

Allowing for the fact that a <1, 7. 10*°K, in
the case under consideration, we conclude from (4.2)
that the viscous forces in equation (3.2) are entirely
determined by the neutrals, i.e., 7 = m,, So that

[divm,| < [jxBl, |dive|<-L]jxB],

ldive, | S—[jxB], K=—fdive.  (4.3)

Making use of the estimates, we find that the ratio
of viscous to electromagnetic forces in expression
(3.3) is of the order

1 1K]
PIETES Tk (4.4)

Keeping (4.3) in mind, we easily see that we can
always neglect the term div 7, in the last bracket on
the right-hand side in Ohm's law (3.4), and that the

ratios of the viscous x! K; and xAK x B to the
electromagnetic terms (1 /oA) j X B are of the order

TLIE <eM{l—y(1+ 1),

[JxB|=
KxB| 0%
Agh |
KORTTRET =% Them, (4.5)
Comparing transport coefficients, we obtain
ri " . B (+Des
;i_]~1 +107 (1 + ) o,v.”, R wor ua vyl
sl 1 ﬂi’ (1 4 w7) ‘“£
T T i e e, o) 1+o1%0y, '
L (1 + 7) w33, *?
® ~h -1 e ‘e
J 1 10 Yy '—-—-————1 T (Ds’Te‘a B
A 1+ 1)(1 + o,r1,*) o71,*
5(_”§~ ( e ete (4.6)

® 1+ 02+ y(1 + )0, T,*— 1)o7’
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For any relations between the partial pressure
gradients the following estimates hold
(GI<IVeL  |VRISIVP .7
We shall assume that
|E[~ 1 juxB]. (4.8)

However, if |E| > ¢! |uxB|, we may omit the termm
c-luXB in (3.4).

5, POSSIBLE FORMS OF OHM'S LAW

The estimates given in (4.4), (4.5) show that
generally speaking, viscous terms must be taken into
account in the Ohm's laws for a three-component
plasma, We shall write out the possible simplified
forms of these relations. In so doing we shall make
considerable use of estimates (2.2), (4¢.1)—(4.8), from
which we conclude that the relative magnitude of the
terms in the Ohm's laws is determined by the mag-
nitude of the following dimensionless parameters:

a, T, 8, 0.1*

We can easily show that for 8 = & in the expression %! R, @,
entering into the right-hand side of (3. 4), we can neglect terms
proportional to the electron temperature gradient in comparison
with the analogous term entering into the expression (1 / n,) R,
If @,t,* < ¢ /0", then the corresponding terms may also be
neglected in the expressions LR, @ »AR,@ X B, entering into
the same expression.

In further estimates we shall compare the viscous and pressure
forces with the electromagnetic terms. Upon so doing, it turns out
that in both Ohm's laws and in those cases when it is not necessary
to take into account terms proportional to j X B, viscous and pres-
sure forces may also be neglected. In addition, we need not take
into account viscosity and préssure gradients in expression (3. 3) in
a weakly fonized plasma, when a « 1, and viscosity terms drop
out of (3, 4) for the less stringent requirement aw;Tj, < L

1°. Let @,1.* ~1, e Ca €1, 0xeh v e,
then we may neglect terms in the expression {1/nee) o
*Re(?) proportional to V7, ¥, T VI'XB,in comparison
with terms »'R{] , x*RY) , 2 R’ xB. Moreover, the
pressure gradients of all components drop out of
equation (3.3), and only the electron pressure gra-
dient remains in (3.4).

1°. 1. f 1~ e (for example, let T, ~ 10* °K,

o ~ 10-?), then we may assume that x| =xi, but
ol and ot differ considerably from each other; the
difference between r! and rt is less significant. In
both Ohm's laws anisotropy appears in the currents
and thermal forces. The Ohm's laws assume the
form

s=rlj, +rlj, —rAjx<B+ %;R,,‘”, (5.1)
1 i . 1 . 1 . (N
E+~c——uXB=GTJ“-'I—GTJ_L—{—;TJXB-{—K"R(, —
— % R, xB + = (R —p,). (5.2)
1°, 2, If T~ 1 (for T. ~ 10* °K this corresponds
to @ ~ 10~3), then r* is greater than rll by less than

10%, and the difference between oll and oL may be
several times larger than between ri and rll, In the
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diffusion equation (3.3) we may disregard anisotropy
in the currents

s = r1j—rAjxB 4 o R,® (5.3)
i
The second relation has its previous form (5.2).
+ 1° 3. For 7 « 1 the anisotropy in the currents

disappears in both equations. The Ohm's laws assume
the form

s = r1j—rAjxB 4 L R,®,
1
E+LtuxB= 1LjtrtlijxBrnir®
+—c_u - GHJ GAJ ® a —
— % R xB+ LR —7p,). (5.4)
e

In cases (1°.2), (1°.3) we may assume that

So

rh=r sl =6 ol = 6N = cnge
o o 1T+ 80,107, " ¢,
1 a, 1% -1 1 -1
To= g gy S0= T To " =Te "+ Tea - (5.5)

and the equations simplify considerably.

2°. Let e <€ o.1.* <€ 1, 8 2¢"%. The following cases
are possible.

2°, 1. f a~1, v~¢" (this corresponds to Tg~
~ 10% K), then the viscosity of the neutrals and the
pressure forces must be taken into account in the
first relation; here anisotropy of the transport co-
efficients is absent

5= rlj—rAj X B+ 4 (G—Ediva, +R®).  (5.6)

The electron pressure gradient must also be omit-
ted in the second expression, and anisotropy is also
absent

E 4 - uxB= - j+ xR —
— wARLMXB 4 RO, (5.7)
€

Generally speaking, we may not neglect the second
term on the right-hand side.

2°, 2, For e Ca<<1 and 1<C 1 the Ohm's laws
assume the form

s = rej + o Ra®, (5.8)

1 1.,
E+ SuxB=j+uRm +-LRo (5.9
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3 gefpCac1,1Ce™h, 8 2xe%, then the Ohm's
laws reduce to the form 2°, 2, for w..* e,

For |V T | /|5 Te|l ~ |V, T|/| VL T.| < 1 we may
omit terms proportional to the ion temperature
gradient in all the expressions which have been
given.
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